White
 Spring - Block 4

Rose
Maths Fractions

Overview

Small Steps

Notes for 2020/21

Make equal parts
Recognise a half
Find a half
Recognise a quarter
Find a quarter
Recognise a third
Find a third
Unit fractions
Non-unit fractions
Equivalence of $\frac{1}{2}$ and $\frac{2}{4}$
Find three quarters
Count in fractions

Concrete manipulatives and real life representations are important in these early stages of learning with fractions.

Don't worry too much about formal learning at this stage, instead focus on activities and play based learning.

All of this content will be formalised and built upon in Year 3.

Make Equal Parts

Notes and Guidance

Children understand the concept of a whole as being one object or one quantity.

Children explore making and recognising equal and unequal parts. They should do this using both real life objects and pictorial representations of a variety of shapes and quantities.

Mathematical Talk

What is the whole? What are the parts?
How many parts is the object/quantity split into?
Are the parts equal? How do you know?
Do equal parts always look the same?
Is there more than one way to split the object/quantity into equal parts?

Varied Fluency

Use different colours to show how this shape can be split into
equal parts.

How many ways can you find?

e.g.

Look at the representations. Decide which show equal parts and which show unequal parts.

Can you make some of your own representations of equal and unequal parts?
Can you split the teddies into three equal groups?
Can you split the teddies into three unequal groups?

How many ways can you split the teddies into equal parts?
Be systematic in your approach.

Year 2| Spring Term | Week 8 to 10 - Number: Fractions

Make Equal Parts

Reasoning and Problem Solving

Recognise a Half

Notes and Guidance

Children understand that halving is splitting a whole into two equal parts. They are introduced to the notation $\frac{1}{2}$ for the first time and will use this alongside sentence stems and 'half' or 'halves'.
They should be introduced to the language of numerator, denominator and what these represent.
Children must explore halves in different contexts, for example, half of a length, shape or set object.

Mathematical Talk

How many equal parts has the shape/object/length been split into?

What fraction is this part worth?
In the notation $\frac{1}{2}$, what does the 1 represent? What does the 2 represent?

Varied Fluency

\square
The whole gummy bear is split into \qquad equal parts. Each part is worth a \qquad .

This can be written as $\frac{\square}{\square}$

\square Which pictures show $\frac{1}{2}$?

\square Which pictures show $\frac{1}{2}$?

Year 2| Spring Term | Week 8 to 10 - Number: Fractions

Recognise a Half

Reasoning and Problem Solving

Find a Half

Notes and Guidance

In this small step children find a half of a set of objects or quantity.

Links should be made here to dividing by 2. Children may need to use the concept of sharing to find a half. Paper plates, hoops and containers can be used to share objects into 2 equal groups.

Mathematical Talk

How did you halve the sweets?
What is the value of the whole? What is the value of half of the whole? What do you notice?

What do you notice about your answers?
How can you use your answer to a half of 4 to help you work out a half of 40 ?

Varied Fluency

Share 20 beanbags equally between two containers, then complete the stem sentences.

The whole is \qquad Half of \qquad is \qquad .

Circle half the cakes.

Circle half the triangles.

Fill in the blanks. Use counters to help you if needed.

$$
\begin{array}{ll}
\frac{1}{2} \text { of } 4=\square & \frac{1}{2} \text { of } 40=\square \\
\frac{1}{2} \text { of } 6=\square & \frac{1}{2} \text { of } 60=\square \\
\frac{1}{2} \text { of } 8=\square & \frac{1}{2} \text { of } 80=\square
\end{array}
$$

Find a Half

Reasoning and Problem Solving

Dora is asked to shade half of her
shape.
This is what she shades.

Is she correct? Explain why.

I am thinking of a number.
Half of my number is more than 10 but less than 15 .
What could my number be?

Yes because there
are 12 squares
altogether and 6
squares are
shaded.
12 is the whole, half
of 12 is 6
$22,24,26,28$

Annie has some gummy bears.
She circles half of them.

How many gummy bears did she have at the start?

Annie started with
16 gummy bears.

Recognise a Quarter

Notes and Guidance

Children extend their knowledge of the whole and halves to recognise quarters of shapes, objects and quantities.

They continue to work concretely and pictorially, understanding that they are splitting the whole into 4 equal parts and that each part is one quarter.

Mathematical Talk

How many equal parts have you split the whole into if you have split it into quarters?
$\ln \frac{1}{4}$ what does the 1 represent? What does the 4 represent?
Can you shade one quarter in different ways? How do you know that you have shaded one quarter?

How many quarters make a whole?

Varied Fluency

Four friends are sharing a cake.

The cake is split into \qquad equal parts.

Each part is worth a \qquad _.

This can be written as

\square Shade $\frac{1}{4}$ of each shape.

Circle the shapes that have a quarter shaded.

Which shapes do not have a quarter shaded? How do you know?
Draw the shapes again and split them into quarters correctly?

Year $2 \mid$ Spring Term | Week 8 to 10 - Number: Fractions

Recognise a Quarter

Reasoning and Problem Solving

True or False?

$\frac{1}{4}$ of the shape is shaded.

Explain your answer.

Children will need to split the shape into four equal parts in order to show that this is true.

Giving children paper to fold will help them understand this concept.

Find a Quarter

Notes and Guidance

Children find quarters of shapes, objects and quantities. They begin by physically sharing amounts into four equal groups, or drawing around quantities then move towards working in the abstract. The link between the concrete, pictorial and abstract representations should be made explicit.
Support children in seeing the relationship between half of an amount and a quarter of an amount.

Mathematical Talk

What is the whole? What is a half? What is a quarter?
Can you circle a quarter in a different way?
How do you know you have found $\frac{1}{4}$?
What do you notice about half of 12 and one quarter of 12 ? Can you explain what has happened?

If a quarter is \qquad then the whole is \qquad -

Varied Fluency

Share the smarties equally between 4 people.

The smarties are split into \qquad equal parts.

Each part is worth a \qquad .

This can be written as

\square Circle one quarter of the cars.

One quarter of \qquad is \qquad
\qquad is $\frac{1}{4}$ of \qquad

Complete:

$$
\begin{aligned}
& \frac{1}{2} \text { of } 12=\square \\
& \frac{1}{4} \text { of } 12=\square \\
& \frac{1}{2} \text { of } 20=\square \\
& \frac{1}{2} \text { of } 8=\square
\end{aligned}
$$

Find a Quarter

Reasoning and Problem Solving

Recognise a Third

Notes and Guidance

Children apply understanding of fractions to finding thirds. They continue to use the language of 'whole' and 'equal parts' and understand that one third is equal to one part out of three equal parts.

They write one third as a fraction and explain what each of the digits represents in the fractional notation.

Mathematical Talk

How many equal parts have you split the whole in to if you have split it into thirds?
$\ln \frac{1}{3}$ what does the digit 1 represent? What does the digit 3 represent?

Can you shade $\frac{1}{3}$ in a different way? How do you know that you have shaded $\frac{1}{3}$?
How many thirds make a whole?

Varied Fluency

Three friends are sharing a pizza.
The pizza is split into \qquad equal parts.

Each part is worth a \qquad .

This is the same as
Shade $\frac{1}{3}$ of each shape.

What is the same? What is different?
Which shapes represent one third?

Explain why the other circles do not represent one third.

Recognise a Third

Reasoning and Problem Solving

Dora says,	Dora is incorrect. She has one		
Quarter of a pizza			
De you agree? Explain your reasoning.			
because I have one slice			
and there are three slices			
left.		\quad	four slices
:---			
altogether and she			
has one of them.			
There would need			
to only be three			
slices altogether for			
her to have one			
third.			

Alex, Annie and Whitney each show a piece of ribbon.

Whitney shows $\frac{1}{2}$ of her whole ribbon.

Alex shows $\frac{1}{4}$ of her whole ribbon.

Annie shows $\frac{1}{3}$ of her whole ribbon.

Whose whole piece is the longest?
Whose is the shortest?
Explain why.

Alex's piece will be the longest
because she will
have four parts
altogether.
Whitney's piece will
be the shortest
because she will
only have two
parts.

Find a Third

Notes and Guidance

Children build on their understanding of a third and three equal parts to find a third of a quantity.

They use their knowledge of division and sharing in order to find a third of different quantities using concrete and pictorial representations to support their understanding.

Mathematical Talk

How many objects make the whole?
Can we split the whole amount into three equal groups?
What is a third of \qquad ?

What is staying the same? What is changing?
How does changing the whole amount change the answer?
Is the answer still worth a third? Explain why?

Varied Fluency

Use the cubes to make three equal groups.

There are \qquad cubes altogether.

One third of \qquad is \qquad \square
\square \qquad is \qquad

Rosie is organising her teddy bears.
She donates $\frac{1}{3}$ of them to charity. How many bears does she have left?
\square Complete:
$\frac{1}{3}$ of $9=\square \quad \frac{1}{3}$ of $15=\square \quad \square$
$\frac{1}{3}$ of $12=\square \frac{1}{3}$ of $18=\square$

Year 2| Spring Term | Week 8 to 10 - Number: Fractions

Find a third

Reasoning and Problem Solving

She cuts it into three equal parts. \begin{tabular}{l}
Annie has a piece of ribbon.

How long would half the ribbon be?

Hould be 9 cm.

$6 \times 3=18 \mathrm{~cm}$
Half of $18=9 \mathrm{~cm})$
A bar model would particularly
useful pictorial
representation of
this question.

\end{tabular}

Unit Fractions

Notes and Guidance

Children understand the concept of a unit fraction by recognising it as one equal part of a whole. They link this to their understanding of recognising and finding thirds, quarters and halves.
Children also need to understand that the denominator represents the number of parts that a shape or quantity is split into.

Mathematical Talk

How can we represent these unit fractions in different ways?
Why do we call them a unit fraction? Where can we see the unit?

Show me $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ of the model/counters etc. What is the same? What is different?

Which unit fraction is bigger/smaller if the whole is the same?

Varied Fluency

What is the same and what is different about each bar model?

What fraction is shaded in each diagram?

What do you notice? Complete the sentence.
The \qquad the denominator the \qquad the fraction.
\square Match the unit fraction to the correct picture.

Year 2| Spring Term | Week 8 to 10 - Number: Fractions

Unit Fractions

Reasoning and Problem Solving

True or False?

This shows $\frac{1}{4}$

Can you shade the same shape so that it shows $\frac{1}{3}$?

True.
There are 12 squares altogether and 3 are shaded.
One quarter of 12 is 3

Any 4 squares
shaded.

I am thinking of a number.

One third of my number is 12
Which will be greater, one half of my number or one quarter of my number?

Use cubes or a bar model to prove your answer.

The whole number is 36

One half is 18
One quarter is 9

One half of the number will be greater.

Non-Unit Fractions

Notes and Guidance

Children are introduced to the non-unit fractions $\frac{2}{3}$ and $\frac{3}{4}$ for the first time.

They also need to look at fractions where the whole is shaded and how these fractions are written. Children see that the numerator and denominator are the same when the fraction is equivalent to one whole.

Mathematical Talk

How many quarters make a whole? How many thirds make a whole? What do you notice?

How many quarters are there in $\frac{3}{4}$?
$\ln \frac{3}{4}$ what does the digit 3 represent? What does the digit 4 represent?

Give me an example of a unit fraction and a non-unit fraction.

Varied Fluency

What fraction is shaded in each diagram?

\square Shade $\frac{3}{4}$ of each shape.

Shade in the whole of each circle. What fraction is represented in each case?

Non-Unit Fractions

Reasoning and Problem Solving

What mistake might Alex have made? \begin{tabular}{l}

Alex says, | She has shaded |
| :--- |
| two quarters of the |
| shape. She may |
| have thought that |
| the numerator |
| represents the |
| number of parts |
| that are shaded |
| and the |
| denominator |
| of the shape. |
| represents the |
| number of parts |
| that aren't. She |
| doesn't realise the |
| denominator |
| represents the |
| whole. |

\hline
\end{tabular}

Sort the fractions into the table.

	Fractions equal to one whole	Fractions less than one whole
Unit fractions		
Non-unit fractions		

$\frac{3}{4}$	$\frac{2}{2}$	$\frac{1}{4}$	$\frac{2}{3}$	$\frac{4}{4}$

What do you notice?
Are there any boxes in the table empty?
What fraction could you write here?

Top left: Empty
Top right: $\frac{1}{3}, \frac{1}{4}$ and $\frac{1}{2}$
Bottom left: $\frac{2}{2}, \frac{3}{3}$
and $\frac{4}{4}$
Bottom right: $\frac{3}{4}$ and
$\frac{2}{3}$
There are no unit
fractions that are equal to one whole.
$\frac{1}{1}$ would fit here.

Equivalence of $\frac{1}{2}$ and $\frac{2}{4}$

Notes and Guidance

Children explore the equivalence of two quarters and one half of the same whole and understand that they are the same.

Children tackle this practically, using strips of paper and concrete apparatus (e.g. counters, Cuisenaire rods, number pieces).

Mathematical Talk

What does equivalent mean? What symbol do we use?
Are these two fractions equal? (half and two quarters)
Are the numerators the same? Are the denominators the same?

How many quarters are equivalent to a half?

Varied Fluency

Using two identical strips of paper, explore what happens when you fold the strips into two equal pieces and four equal pieces.
Compare one of the two equal pieces with two of the four equal pieces. What do you notice?

\square Shade one half and two quarters of each shape.

\square Give children an amount of counters or concrete objects, can you find one half of them? Can you find two quarters of them? What do you notice?

Year 2| Spring Term | Week 8 to 10 - Number: Fractions

Equivalence of $\frac{1}{2}$ and $\frac{2}{4}$

Reasoning and Problem Solving

Find Three Quarters

Notes and Guidance

Children use their understanding of quarters to find three quarters of a quantity.

They work concretely and pictorially to make connections to the abstract.

Children should be encouraged to spot patterns and relationships between quarters of amounts.

Mathematical Talk

How many quarters make a whole?
Can you represent this in a bar model?
How many equal parts is $\frac{3}{4}$?
Can you spot any patterns?
What has stayed the same? What has changed? What do you notice?

Varied Fluency

Amir shares 12 beanbags into 4 equal groups.
Use the image to complete the sentences.

One quarter of 12 is equal to \qquad
Two quarters of 12 is equal to \qquad Three quarter of 12 is equal to \qquad Four quarters of 12 is equal to \qquad
Use counters and a bar model to help you find $\frac{3}{4}$ of 8 and $\frac{3}{4}$ of 16 . What do you notice?

Use counters, cubes, or bar models to help you fill in the blanks:
$\frac{1}{4}$ of $24=\square$
$\frac{2}{4}$ of $24=\square$
$\frac{3}{4}$ of $24=\square$
$\frac{4}{4}$ of $24=\square$

Year $2 \mid$ Spring Term | Week 8 to 10 - Number: Fractions

Find Three Quarters

Reasoning and Problem Solving

Amir is using beanbags and hoops to

find three quarters of 20 | Amir hasn't created |
| :--- |
| equal groups. 20 |
| should be shared |
| into 4 equal parts |
| There should be 5 |
| beanbags in each |
| hoop so three |
| quarters of 20 is 15 |
| not 14 |

Count in Fractions

Notes and Guidance

Using their knowledge of halves, thirds and quarters, children count in fractions from any number up to 10 .

They begin to understand that fractions can be larger than one whole.

Teachers can use a number line, counting stick or hoop to support them in counting in fractions.

Mathematical Talk

Which number are you starting on?
How many parts are there in your fraction whole?
Which fraction will come next?
What patterns can you spot?
Continue the pattern: $\frac{1}{3}, \frac{2}{3}, 1,1 \frac{1}{3}, \frac{2}{3}, 2,2 \frac{1}{3}, 2 \frac{2}{3}$,

Varied Fluency

What would the next image in the sequence look like?

What do you notice about the fraction of yellow cubes? Can you count the fractions represented?
\square In groups of 4, give each child an identical strip of paper. Fold each of them into 2 equal parts. Count how many halves there are on two strips of paper, on three strips, on 4 strips. Predict: how many halves will there be on six, seven, eight strips?
\square Shade the correct number of parts for each fraction.

Complete each number line.
What's the same, what's different?

Count in Fractions

Reasoning and Problem Solving

Alex and Whitney are counting in
quarters.
:---
lorrect. Two
quarters is
equivalent to one
half and four
quarters is
equivalent to one
whole.

Who is correct? Explain your answer.

One quarter, one half,
three quarters, one
whole...

four quarters...

